Geometric Accuracy Assessment and Correction of Imagery from Chinese Earth Observation Satellites (hj-1 A/b, Cbers-02c and Zy-3)
نویسندگان
چکیده
The Chinese satellites HJ-1 A/B, CBERS-02C and ZY-3 have been recently launched and are considered as the main space platforms on orbit to acquire optical images for monitoring the Earth for various applications in China. The commercially distributed products (Level 1 or 2) of those satellites usually lack sufficient information (about platform, sensor and ephemeris) that is the key to geometrically correct the acquired images. It is therefore always a challenging issue and the first step to assess the geometric accuracy, which is a key part of qualities in spatial data, of the images from those satellites before generation of geometrically accurate image products. This paper first describes an operational methodology to assess the geometric accuracy of those satellite images. The methodology automatically collects dense and spatially well distributed ground control points (GCP) against reference imagery and then fits those GCPs to the given geometric math model. The geometric accuracy of an image can then be assessed from the overall fitness of those GCPs and their distribution of geometric errors along and across track. The residual mean square (RMS) parameter is used to indicate the degree of overall fitness of the GCPs to the photogrammetric system. The distribution of geometric errors may be random or approximated by a second or higher order polynomial functions; the latter case is generally considered as a systematic error that was not removed completely in the Level 1 or 2 data product. In order to draw solid conclusions, a significant number of samples are selected for each of those satellites by taking variations of landscapes into consideration. The assessment experiments demonstrate that the accuracy of HJ-1 A/B is often very poor, that of CBERS-02C is better than the situation of HJ-1 A/B but records poor accuracy for most samples, and that of ZY-3 is the best among all satellites under investigation and has few samples with poor accuracy. According to the assessment results, this paper suggests an operational correction methodology to improve the accuracy for those satellites, particularly for the HJ-1 A/B and CBERS-02C. Operational production proves that the proposed correction methodology is capable of achieving much higher accuracy than traditional ones and the achieved accuracy meets high standard product requirements for such applications as mapping. * Corresponding author. Tel. 819-770-0022 x314; [email protected]; http://www.pcigeomatics.com The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2, 2014 ISPRS Technical Commission II Symposium, 6 – 8 October 2014, Toronto, Canada This contribution has been peer-reviewed. doi:10.5194/isprsarchives-XL-2-71-2014 71
منابع مشابه
Satellite Jitter Estimation and Validation Using Parallax Images
Satellite jitter (SJ) is an important error source that affects the geometric accuracy of high resolution satellite imagery. In this paper, the quantitative relationship between the jitter displacement (image displacement caused by SJ) and relative registration error obtained from parallax images is deduced to be theoretical in detail, and the jitter displacement estimation model is built to es...
متن کاملComparative Analysis of Chinese HJ-1 CCD, GF-1 WFV and ZY-3 MUX Sensor Data for Leaf Area Index Estimations for Maize
In recent years, China has developed and launched several satellites with high spatial resolutions, such as the resources satellite No. 3 (ZY-3) with a multi-spectral camera (MUX) and 5.8 m spatial resolution, the satellite GaoFen No. 1 (GF-1) with a wide field of view (WFV) camera and 16 m spatial resolution, and the environment satellite (HJ-1A/B) with a charge-coupled device (CCD) sensor and...
متن کاملData Quality Evaluation of ZY-1 02C Satellite
ZY-1 02C satellite is a new Chinese civil remote sensing satellite launched on December 22, 2011. It is the highest resolution civil remote sensing satellite in China which carried panchromatic/multispectral sensor and high resolution sensor. Compared with image of SPOT5 satellite, the radiation quality of ZY-1 02C sensors data was evaluated. The result showed: the SNR of ZY-1 02C is higher tha...
متن کاملCloud and Snow Discrimination for CCD Images of HJ-1A/B Constellation Based on Spectral Signature and Spatio-Temporal Context
It is highly desirable to accurately detect the clouds in satellite images before any kind of applications. However, clouds and snow discrimination in remote sensing images is a challenging task because of their similar spectral signature. The shortwave infrared (SWIR, e.g., Landsat TM 1.55–1.75 μm band) band is widely used for the separation of cloud and snow. However, for some sensors such as...
متن کاملInner FoV Stitching of Spaceborne TDI CCD Images Based on Sensor Geometry and Projection Plane in Object Space
High-quality inner FoV (Field of View) stitching is currently a prerequisite step for photogrammetric processing and application of image data acquired by spaceborne TDI CCD cameras. After reviewing the technical development in the issue, we present an inner FoV stitching method based on sensor geometry and projection plane in object space, in which the geometric sensor model of spaceborne TDI ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014